Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization.
نویسنده
چکیده
In Saccharomyces cerevisiae, septin mutations have severe effects on colony-forming ability, particularly at high temperatures, allowing the full variety of genetic tools available in this model organism to be applied to the study of septin biology. Although many details of septin function remain unknown, one can exploit a small number of easily scored phenotypes-proliferation capacity, cell morphology, septin localization, and septin ring integrity-as sensitive readouts of properly assembled septin filaments. Accordingly, this chapter focuses on genetic approaches targeted toward understanding the molecular mechanisms of de novo septin folding, heterooligomerization, and polymerization into filaments. The same general methods can be used to interrogate septin function, although interpretation of results can be more complicated. As genetic-based methodologies are technically simple but particularly dependent on interpretation, here I focus on the logic underlying the most common interpretations of results using septin mutants.
منابع مشابه
GTP Binding Induces Filament Assembly of a Recombinant Septin
The septins are a family of GTPases involved in cytokinesis in budding yeast, Drosophila, and vertebrates (see for review). Septins are associated with a system of 10 nm filaments at the S. cerevisiae bud neck, and heteromultimeric septin complexes have been isolated from cell extracts in a filamentous state. A number of septins have been shown to bind and hydrolyze guanine nucleotide. However,...
متن کاملSeptin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae.
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not...
متن کاملkinase Cla 4 p , and the actin cytoskeleton in Saccharomyces cerevisiae
SUMMARY Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding...
متن کاملClustering of Short Read Sequences for de novo Transcriptome Assembly
Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...
متن کاملSEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility
Septins are critical for numerous cellular processes through the formation of heteromeric filaments and rings indicating the importance of structural regulators in septin assembly. Several posttranslational modifications (PTMs) mediate the dynamics of septin filaments in yeast. However, little is known about the role of PTMs in regulating mammalian septin assembly, and the in vivo significance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in cell biology
دوره 136 شماره
صفحات -
تاریخ انتشار 2016